Vielecke
Arten
Basiswissen
Vielecke, auch Polgyone genannt, sind flache 2D-Figuren: die Ecken sind immer nur mit geraden Linien verbunden. Hier stehen Arten und Beispiele.
Die wichtigsten der Schulgeometrie
=> Parallelogramm
=> Drachenviereck
=> Rechteck
=> Quadrat
=> Dreieck
=> Raute
=> Trapez
=> Fünfeck
=> Sechseck
Regelmäßige Vielecke
Man nennt ein Vieleck regelmäßig oder auch regulär, wenn alle seine Seiten gleich lang sind und wenn alle seine Innenwinkel gleich groß sind. Das klassische Beispiele ist das Quadrat. Auf diesen Seiten hier nennen wir solche Vielecke => Polygone
Unregelmäßige Vielecke
Ein Vieleck heißt unregelmäßig oder nicht regulär, wenn nicht alle Seiten gleich langs sind und wenn nicht alle Innenwinkel gleich groß sind.
Allgemeine Vielecke
Die regelmäßigen und die unregelmäßigen Vielecke fasst man zusammen zu den allgemeinen Vielecken.
Nulleck
Das Nulleck als Vieleck ist nicht definiert. Es wäre streng genommen ein Vieleck ohne Ecken, was einen Widerspruch mit sich selbst ergibt. Flächenformen ohne Ecken gibt es hingegen viele, etwa die Ellipse oder den => Kreis
Eineck
Wie das Nulleck ist auch das Eineck als Vieleck nicht definiert. Unter dem Namen Monogon gibt es verschiedene Interpretationen, die hier aber nicht weiter behandelt werden.
Zweieck
Das Zweieck ist in der sphärischen Geometrie definiert. Auf einer Kugeloberfläche kann man zwei verschiedene Punkte durch verschiedene quasi-gerade Linien verbinden. Die dadurch entstandene Fläche ist ein => Kugelzweieck
Dreieck
Das Dreieck, selten auch Trigon genannt, verbindet drei Punkte durch ausschließlich gerade Strecken. Für Dreiecke gibt es sehr viele Formeln zur Berechnung der Seitenlängen, Flächeninhalte und weiterer Eigenschaften. Da man jedes beliebige Vieleck in Dreiecke zerlegen kann, spielen die Dreiecke auch zur Berechnung anderer Flächen eine große Rolle. Eine Themenübersicht steht unter => Dreiecksrechnung
Viereck
Ein Viereck, auch Tetragon genannt, besteht aus vier Ecken die durch ausschließlich gerade Strecken miteinander verbunden sind. Bekannte Viereckarten sind das Quadrat, das Rechteck, die Raute und das Trapez. Für Vierecke gelten besondere Rechenformeln, mehr dazu unter => Viereck
Fünfeck
Das Fünfeck (auch Pentagon) besteht aus fünf Ecken die durch ausschließlich gerade Strecken miteinander verbunden sind. Fünfecke kommen in der elementaren Geometrie eher selten vor, oft als Grundfläche von Körpern. Berechnungen an Fünfecken führt man oft über eine Zerlegung in Dreiecke durch. Siehe auch => Fünfeck
Sechseck
Das Sechseck, auch Hexagon, kommt gelegentlich als Grundfläche von Pyramiden oder Prismen vor. Ähnlich wie beim Fünfeck geht man auch hier oft auf die Dreiecksrechnung zurück. Siehe auch => Sechseck
Siebeneck
Das Siebeneck (Heptagon) spielt in der Schulmathematik so gut wie keine Rolle. Es ist hier nur der vollständigkeit halbe aufgeführt. Siehe auch => Siebeneck
Achteck
Das Achteck (Oktogon) spielt vor allem in seiner regelmäßigen Form in der Architektur und Kunst eine Rolle. Siehe auch => Achteck
n-Eck
Das meint: ein Vieleck mit egal wie vielen Ecken. Das kleine n steht als Platzhalter in der Mathematik oft für eine natürliche Zahl, hier sinngemäß für Zahlen ab 3. Unter dem Begriff n-Eck kann man dann Formeln, Eigenschaften und Gesetzmäßigkeiten zusammenfassen, die für alle beliebigen Vielecke gelten. Mehr dazu unter => n-Eck
Synonyme
=> Vielecke
=> Polygone