Induktion (Philosophie)
Schlussart
Basiswissen
Man beobachtet, dass im Herbst alle Laubbäume in der eigenen Heimat ihr Laub abwerfen. Daraus zu verallgeimern auf die Aussage: alle Laubbäume werfen im Herbst ihr Laub ab, wäre eine logische Induktion.
Herzfrequenzen
Ein Mäuseherz schlägt in der Minute bis zu 1000 mal, das eines Elefanten nur etwa 6 mal. Eine Induktion im Sinne der Logik wäre es, daraus zu folgern, dass die Herzen kleiner Tiere schneller schlagen als die Herzen großer Tiere. Für eine Zahlenliste, siehe unter Herzfrequenzen ↗
Statistik
Das induktive Schlussfolgern ist in der Statistik zu einem eigenen Gebiet der Mathematik weiterentwickelt worden: wenn man eine Stichprobe, etwa eine Befragung von Passanten einer Fußgängerzone, macht, inwiefern kann dann verallgemeinern auf auf alle Personen einer Stadt schließen? Lies mehr dazu unter induktive Statistik ↗
Fußnoten
- [1] Isaac Newton sah die Induktion als ersten Schritt jeder Naturwissenschaft an: "As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things by the Method of Analysis, ought ever to precede the Method of Composition. This Analysis consists in making Experiments and Observations, and in drawing general Conclusions from them by Induction, and admitting of no Objections against the Conclusions, but such as are taken from Experiments, or other certain Truths. For Hypotheses are not to be regarded in experimental Philosophy. And although the arguing from Experiments and Observations by Induction be no Demonstration of general Conclusions; yet it is the best way of arguing which the Nature of Things admits of, and may be looked upon as so much the stronger, by how much the Induction is more general. And if no Exception occur from Phænomena, the Conclusion may be pronounced generally. But if at any time afterwards any Exception shall occur from Experiments, it may then begin to be pronounced with such Exceptions as occur. By this way of Analysis we may proceed from Compounds to Ingredients, and from Motions to the Forces producing them; and in general, from Effects to their Causes, and from particular Causes to more general ones, till the Argument end in the most general. This is the Method of Analysis: And the[Pg 405] Synthesis consists in assuming the Causes discover'd, and establish'd as Principles, and by them explaining the Phænomena proceeding from them, and proving the Explanations." In: Isaac Newton: OPTICKS: OR, A TREATISE OF THE Reflections, Refractions, Inflections and colours OF LIGHT. The FOURTH EDITION, corrected. By Sir ISAAC NEWTON, Knt. LONDON: Printed for WILLIAM INNYS at the West-End of St. Paul's. MDCCXXX (1730). Dort die Seiten 404 und 405.
- [2] 1833, die Deduktion als Erkenntnisprinzip im Zusammenwirken mit der Induktion: "The science of optics, like every other physical science, has two different directions of progress, which have been called the ascending and the descending scale, the inductive and the deductive method, the way of analysis and of synthesis. In every physical science, we must ascend from facts to laws, by the way of induction and analysis; and must descend from laws to consequences, by the deductive and synthetic way. We must gather and groupe appearances, until the scientific imagination discerns their hidden law, and unity arises from variety: and then from unity must re-deduce variety, and force the discovered law to utter its revelations of the future." In: Hamilton, William Rowan, Sir (1833). On a general method of expressing the paths of light, & of the planets, by the coefficients of a characteristic function. Printed by P.D. Hardy.