A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 Ω
Das Banner der Rhetos-Website: zwei griechische Denker betrachten ein physikalisches Universum um sie herum.

kgV über Zahlenreihen

Anleitung

© 2016 - 2025




Basiswissen


Die Drei hat als Vielfache die Zahlen: 0, 3, 6, 9, 12, 15 und so weiter. Die Vier hat als Vielfache die Zahlen: 0, 4, 8, 12, 16 und so weiter. Die kleinste Zahl, die von beiden ein Vielfaches ist, ist hier die 12. Man schreibt: kgV(3;4)=12. Das Verfahren zur Bestimmung über Zahlenreihen ist hier Schritt-für-Schritt erklärt.

Was meint kgV?


  • Das ist das kleinste gemeinsame Vielfache von zwei Zahlen.
  • Als kgV sind normalerweise nur natürliche Zahlen erlaubt.
  • Die natürlichen Zahlen sind die 1; 2; 3; 17 ... etc.

Wie bestimmt man das kgV über Zahlenreihen?


  • Dazu gibt es verschiedene Methoden.
  • Am einfachsten ist es, für beide Zahlen ...
  • möglichst lang ihre Zahlenreihe hinzuschreiben.
  • Die erste Zahl, die in beiden Reihen auftaucht ist das kgV.

Was wäre ein Beispiel?


  • Angenommen du suchst das kgV von 4 und 6.
  • Viererreihe: 4; 8; 12; 16; 20; 24; 28 ...
  • Sechserreihe: 6; 12; 18; 24; 30; 36 ...
  • Die erste Zahl in beiden Reihen ist die 12.
  • Dann ist die 12 das kgV von 4 und 6.

Geht das immer?


  • Ja.
  • Zwei natürliche Zahlen haben immer ein kgV.
  • Es kann aber sein, dass man die Zahlenreihen sehr lang machen muss.
  • Wenn sie zu lang werden, kann man auch andere Methoden nehmen.

Startseite Impressum Feedback © 2010-2025 Nachilfe Physik Nachilfe Chemie